{{htmlmetatags>metatag-robots=()
metatag-title=(OTHER CONTRIBUTIONS SIERPINSKI CHALLENGE (final) | ugBASIC User Manual)
metatag-keywords=(ugBASIC,Commodore 64,Commodore PLUS/4,ZX Spectrum)
metatag-description=(An isomorphic language for retrocomputers)
metatag-media-og:image=(:ugbasic:logo-ugbasic-fb.png)
metatag-og:title=(OTHER CONTRIBUTIONS SIERPINSKI CHALLENGE (final) | ugBASIC User Manual)
metatag-og:description=(An isomorphic language for retrocomputers)
}}
====== ugBASIC User Manual ======
===== OTHER CONTRIBUTIONS SIERPINSKI CHALLENGE (final) =====
==== PURPOSE ====
This example is the final version for the "Sierpinski Challenge", an exciting challenge regarding fractals. This example reproduces the famous "SIERPINSKI TRIANGLE" on retrocomputers. It is a very simple fractal to obtain, which takes its name from the mathematician who first studied its properties. Such a triangle can have different shapes and sizes and can be obtained in various ways. One of the methods to create it is the so-called "Game of chaos". The fractal is built by creating iteratively a sequence of points, starting from a random initial point, in which each point of the sequence is a given fraction of the distance between the previous point and one of the vertices of the polygon; the vertex is chosen at random in each iteration. Repeating this iterative process a large number of times, selecting the vertex at random at each iteration, often (but not always) produces a fractal shape. Using a regular triangle and the factor 1/2, it will result in a Sierpinski triangle. This source joined the [[https://www.facebook.com/groups/retroprogramming/posts/879754189371504/|Sierpinski Challenge]] on **RetroProgramming Italia - RP Italia**.
==== SOURCE CODE ====
' ============================================================================
' INITIALIZATION / INIZIALIZZAZIONE
' ============================================================================
' Let's start measuring the execution time from the first useful instruction.
' Then we also measure the time it takes to initialize the graphics subsystem
' and clear the screen.
'
' Iniziamo la misurazione del tempo di esecuzione dalla prima istruzione utile.
' Quindi misuriamo anche il tempo che impiega a inizializzare il sottosistema
' grafico e a cancellare lo schermo.
'
t=TI
' With this command we ask ugBASIC to select a "bitmap" mode (ie where it is
' possible to draw "pixel by pixel") resolution of preference. In the specific
' case, a resolution of 320 pixels wide by 200 pixels height, for a maximum
' of two colors per pixel, is requested. This request must be understood as a
' suggestion: it is possible that the hardware on which the program will run
' may not have this resolution, or perhaps the minimum number of colors
' is 16. It will be the programmer's responsibility to adapt the program so
' that it can work in every situation.
'
' Con questo comando chiediamo a ugBASIC di selezionare una modalit? "a bitmap"
' (cio? dove sia possibile disegnare "pixel per pixel"), con una risoluzione di
' preferenza. Nel caso specifico, una risoluzione di 320 pixel di larghezza
' per 200 pixel di altezza, per un massimo di due colori per pixel. Questa
' richiesta deve essere intesa come un suggerimento: ? possibile che l'hardware
' su cui girer? il programma non possa disporre di questa risoluzione, o
' magari il numero di colori minimo ? 16. Sar? responsabilit? del programmatore
' adattare il programma affinch? possa funzionare in ogni situazione.
'
Bm En(320,200,2)
' Let's set the black color for the pixels to be drawn.
'
' Impostiamo il colore nero per i pixel da disegnare.
'
Ik Bl
' Let's clear the screen, setting the background color as white.
'
' Cancelliamo lo schermo, impostando il colore di sfondo come bianco.
'
Cl Wht
' Now let's calculate the size of the window (screenWidth x screenHeight pixels)
' within which we will draw the Sierpinski triangle. As a general rule, we will
' use a window of 256 pixels wide by a height equal to the maximum that can be
' represented by the hardware. If there are fewer than 256 pixels available,
' we'll use those. If there are more than 256 pixels available, the triangle
' will be centered on the screen (by using and offset of offsetX pixels).
'
' |----------- screenWidth -----------|
' +-------------------------------------------------------+
' |<------->+-----------------------------------+<------->|---
' | offsetX | | offsetX | |
' | | | | | screenHeight
' . . . . .
'
' Ora calcoliamo le dimensioni della finestra entro la quale disegneremo il
' triangolo di Sierpinski (screenWidth x screenHeight pixels). Come regola
' generale, utilizzeremo una finestra di 256 pixel di larghezza per una
' altezza pari al massimo rappresentabile dall'hardware. Se vi sono meno di
' 256 pixel disponibili, useremo quelli. Se vi sono pi? di 256 pixel
' disponibili, il triangolo sar? centrato sullo schermo (con un offset
' pari a offsetX pixel).
'
CONST screenWidth = IF(Sc Wd < 256, Sc Wd, 256)
CONST screenHeight = Sc Hg
CONST offsetX = IF(Sc Wd < 256, 0, ( Sc Wd - screenWidth ) \ #2)
' The procedure for drawing the triangle requires three (starting)
' coordinates, which are the vertices of the triangle to start from.
'
' * (x1,y1)
' / \
' / \
' (x2,y2) *-----* (x3,y3)
'
' La procedura per disegnare il triangolo necessita di tre coordinate
' (di partenza), che sono i vertici del triangolo da cui partire.
'
CONST x1=(screenWidth\#2): CONST y1=0
CONST x2=0: CONST y2=(screenHeight-1)
CONST x3=(screenWidth-1): CONST y3=(screenHeight-1)
' We set the number of points to draw, at most. The challenge includes 10,000 points.
' The greater the number of points, the more defined the triangles will be.
' We also calculate the value of a quarter of the points, as the algorithm will
' draw four points at a time.
'
' Impostiamo il numero di punti da disegnare, al massimo. La challenge prevede 10.000
' punti. Maggiore ? il numero di punti, pi? definiti saranno i triangoli.
' Calcoliamo anche il valore di un quarto dei punti, in quanto l'algoritmo disegner?
' quattro punti alla volta.
'
CONST limit = 10000
' We define the coordinates of each point as (x, y). These coordinates will be updated
' as the triangle is drawn. The starting value coincides with the top vertex.
'
' Definiamo le coordinate di ogni punto come (x, y). Tali coordinate saranno aggiornate
' man mano che sar? disegnato il triangolo. Il valore iniziale coincide con il
' vertice superiore.
'
x = #x1 : y = #y1
' This variable keeps the number of points drawn so far.
'
' Questa variabile mantiene il numero di punti disegnati fino a questo momento.
'
n = 0
' Starting from this point we start the loop to draw the triangle.
' It is a loop that will be repeated for the total number of points
' to be drawn.
'
' A partire da questo punto iniziamo il loop per disegnare il triangolo.
' Si tratta di un loop che sar? ripetuto per il numero di punti da
' disegnare, complessivamente.
'
Rpt
' We randomly choose one of the vertices from which to start to draw
' the next point. As explained in the data flow diagram, the choice
' starts from a number ranging from 0 to 255, the distribution of
' which is not completely random.
'
' Scegliamo a caso uno dei vertici da cui partire per disegnare il
' prossimo punto. Come spiegato nel diagramma di flusso dei dati,
' la scelta parte da un numero che va da 0 a 255, la cui distribuzione
' non ? completamente causale.
'
r = RND(3)
' If we were directly based on this number to decide which vertex to start
' from, we would have vertices that would be chosen more frequently than
' the others. This would result in a less defined image on the less
' chosen points. To avoid this, we will use a large vector exactly like
' the number of random numbers that can be generated. This vector contains,
' in an equidistributed way, the information on the acissa and the ordinate
' of each vertex. Once chosen, this coefficient will be added to the current
' coordinates, thus making the average. ugBASIC allows you to use syntax in
' "prefix" form, ie where one of the operands is also the recipient of the
' result of the operation. This is the meaning of the subsequent operations,
' which update the coordinates to be drawn.
'
' Se ci basassimo direttamente su questo numero per decidere da quale
' vertice partire, avremmo dei vertici che sarebbero scelti con maggior
' frequenza degli altri. Ci? determinerebbe una immagine meno definita sui
' punti meno scelti. Per evitarlo, utilizzeremo un vettore grande esattamente
' come il numero di numeri casuali generabili. Tale vettore contiene, in
' modo equidistribuito, le informazioni sull'acissa e sull'ordinata di ogni vertice.
' Una volta scelto, tale coefficiente sar? aggiunto alle coordinate attuali,
' facendone quindi la media. ugBASIC consente di utilizzare sintassi in forma
' "prefissa", cio? dove uno degli operandi ? anche il destinatario del risultato
' dell'operazione. Questo ? il significato delle operazioni successive,
' che aggiornano le coodinate da disegnare.
'
' x = ( x + xx() ) / 2
' => x = x + xx(); x = x / 2
IF r = 0 Th
Ad x, #x1
Ad y, #y1
El IF r = 1 Th
Ad x, #x2
Ad y, #y2
El
Ad x, #x3
Ad y, #y3
Ei
Dv x, #2
Dv y, #2
' Finally we can draw the point thus obtained.
'
' Finalmente possiamo disegnare il punto cos? ricavato.
'
Pl offsetX + x, y
' Pass to next point.
'
' Passiamo al prossimo punto.
'
INC n
' We repeat the loop until we have drawn all the points.
'
' Ripetiamo il loop fino a che non abbiamo disegnato tutti i punti.
'
Un n = limit
' At the end we calculate how much time has passed, and show
' it on the screen. Rounding is to the second.
'
' Al termine calcoliamo quanto tempo ? passato, e mostriamolo
' a schermo. L'arrotondamento ? al secondo.
te = TI - t
Hm
PRINT "time = ";(te/60);" sec"
PRINT "points = ";limit
==== SOURCE FILE ====
* ''[[https://github.com/spotlessmind1975/ugbasic/tree/main/examples/contrib_sierpinski4_10lines.bas|contrib_sierpinski4_10lines.bas]]''
==== HOW TO COMPILE AND RUN ====
The instructions here refer to compiling the example from the command line. For Microsoft Windows users we suggest using **[[https://spotlessmind1975.itch.io/ugbasic-ide|UGBASIC-IDE]]**, which allows you to compile the example with just one click.=== ATARI 400/800 family ===
In order to compile and run the example, you need to have the Altirra emulator, and in particular that the ''altirra'' executable is accessible.
Then, type this command on the command line:
# Linux
ugbc.atari contrib_sierpinski4_10lines.bas -o example.xex
altirra example.xex
# Windows
ugbc.atari.exe contrib_sierpinski4_10lines.bas -o example.xex
altirra example.xex
=== ATARI 600XL/800XL/1200XL/XG(SE) family ===
In order to compile and run the example, you need to have the Altirra emulator, and in particular that the ''altirra'' executable is accessible.
Then, type this command on the command line:
# Linux
ugbc.atarixl contrib_sierpinski4_10lines.bas -o example.xex
altirra example.xex
# Windows
ugbc.atarixl.exe contrib_sierpinski4_10lines.bas -o example.xex
altirra example.xex
=== Commodore 64 ===
In order to compile and run the example, you need to have the VICE emulator, and in particular that the ''x64sc'' executable is accessible.
Then, type this command on the command line:
# Linux
ugbc.c64 contrib_sierpinski4_10lines.bas -o example.prg
x64sc example.prg
# Windows
ugbc.c64.exe contrib_sierpinski4_10lines.bas -o example.prg
x64sc example.prg
=== Commodore PLUS/4 ===
== Using YAPE ==
In order to run the example, you need to have the YAPE emulator. In particular that the ''yape'' executable is accessible.
Then, type this command on the command line:
# Linux
ugbc.plus4 contrib_sierpinski4_10lines.bas -o example.prg
yape example.prg
# Windows
ugbc.plus4.exe contrib_sierpinski4_10lines.bas -o example.prg
yape example.prg
== Using VICE ==
In order to run the example, you need to have the VICE emulator. In particular that the ''xplus4'' executable is accessible.
Then, type this command on the command line:
# Linux
ugbc.plus4 contrib_sierpinski4_10lines.bas -o example.prg
xplus4 example.prg
# Windows
ugbc.plus4.exe contrib_sierpinski4_10lines.bas -o example.prg
xplus4 example.prg
=== Dragon 32 ===
In order to compile and run the example, you need to have the XROAR emulator, and in particular that the ''xroar'' executable is accessible.
Then, type this command on the command line:
# Linux
ugbc.d32 contrib_sierpinski4_10lines.bas -o example.bin
xroar -rompath (your rom path) example.bin
# Windows
ugbc.d32.exe contrib_sierpinski4_10lines.bas -o example.bin
xroar.exe -rompath (your rom path) example.bin
=== Dragon 64 ===
In order to compile and run the example, you need to have the XROAR emulator, and in particular that the ''xroar'' executable is accessible.
Then, type this command on the command line:
# Linux
ugbc.d64 contrib_sierpinski4_10lines.bas -o example.bin
xroar -rompath (your rom path) example.bin
# Windows
ugbc.d64.exe contrib_sierpinski4_10lines.bas -o example.bin
xroar.exe -rompath (your rom path) example.bin
=== PC128 Olivetti Prodest ===
In order to compile and run the example, you need to have the DCMOTO emulator, and in particular that the ''dcmoto'' executable is accessible.
Then, type this command on the command line and on the emulator:
# Linux
ugbc.pc128op contrib_sierpinski4_10lines.bas -o example.k7
dcmoto
(choose BASIC 128)
CLEAR,&H2FFF: LOADM"CASS:",R: EXEC
# Windows
ugbc.pc128op.exe contrib_sierpinski4_10lines.bas -o example.k7
dcmoto
(choose example.k7)
(choose BASIC 128)
CLEAR,&H2FFF: LOADM"CASS:",R: EXEC
=== Thomson MO5 ===
In order to compile and run the example, you need to have the DCMOTO emulator, and in particular that the ''dcmoto'' executable is accessible.
Then, type this command on the command line and on the emulator:
# Linux
ugbc.pc128op contrib_sierpinski4_10lines.bas -o example.k7
dcmoto
(choose BASIC 128)
CLEAR,&H2FFF: LOADM"CASS:",R: EXEC
# Windows
ugbc.pc128op.exe contrib_sierpinski4_10lines.bas -o example.k7
dcmoto
(choose example.k7)
(choose BASIC 128)
CLEAR,&H2FFF: LOADM"CASS:",R: EXEC
=== Commodore VIC-20 ===
In order to compile and run the example, you need to have the VICE emulator, and in particular that the ''xvic'' executable is accessible.
Then, type this command on the command line:
# Linux
ugbc.vic20 contrib_sierpinski4_10lines.bas -o example.prg
xvic --memory 24k example.prg
# Windows
ugbc.vic20.exe contrib_sierpinski4_10lines.bas -o example.prg
xvic --memory 24k example.prg
=== ZX Spectrum ===
In order to compile and run the example, you need to have the Speccy emulator, and in particular that the ''speccy'' executable is accessible.
Then, type this command on the command line:
# Linux
ugbc.zx contrib_sierpinski4_10lines.bas -o example.tap
Speccy example.tap
# Windows
ugbc.zx.exe contrib_sierpinski4_10lines.bas -o example.tap
Speccy example.tap
=== MSX ===
In order to compile and run the example, you need to have the openMsx or the BlueMSX emulator, and in particular that its executable is accessible.
Then, type this command on the command line:
== openMSX ==
# Linux
ugbc.msx1 contrib_sierpinski4_10lines.bas -o example.rom
openmsx -cart example.rom
# Windows
ugbc.msx1.exe contrib_sierpinski4_10lines.bas -o example.rom
openmsx -cart example.rom
== blueMSX ==
# Linux
ugbc.msx1 contrib_sierpinski4_10lines.bas -o example.rom
bluemsx example.rom
# Windows
ugbc.msx1.exe contrib_sierpinski4_10lines.bas -o example.rom
bluemsx example.rom
=== ColecoVision ===
In order to compile and run the example, you need to have the openMsx or the BlueMSX emulator, and in particular that its executable is accessible.
Then, type this command on the command line:
== openMSX ==
# Linux
ugbc.coleco contrib_sierpinski4_10lines.bas -o example.rom
openmsx -machine \"COL - ColecoVision\" -cart example.rom
# Windows
ugbc.coleco.exe contrib_sierpinski4_10lines.bas -o example.rom
bluemsx -machine \"COL - ColecoVision\" example.rom
== blueMSX ==
# Linux
ugbc.coleco contrib_sierpinski4_10lines.bas -o example.rom
bluemsx /machine \"COL - ColecoVision\" /rom1 example.rom
# Windows
ugbc.coleco.exe contrib_sierpinski4_10lines.bas -o example.rom
bluemsx /machine \"COL - ColecoVision\" /rom1 example.rom
=== SEGA SC-3000 ===
In order to compile and run the example, you need to have the BlueMSX emulator, and in particular that its executable is accessible.
Then, type this command on the command line:
# Linux
ugbc.sc3000 contrib_sierpinski4_10lines.bas -o example.rom
bluemsx /machine \"SEGA - SC-3000\" /rom1 example.rom
# Windows
ugbc.sc3000.exe contrib_sierpinski4_10lines.bas -o example.rom
bluemsx /machine \"SEGA - SC-3000\" /rom1 example.rom
=== SEGA SG-1000 ===
In order to compile and run the example, you need to have the BlueMSX emulator, and in particular that its executable is accessible.
Then, type this command on the command line:
# Linux
ugbc.sg1000 contrib_sierpinski4_10lines.bas -o example.rom
bluemsx /machine \"SEGA - SG-1000\" /rom1 example.rom
# Windows
ugbc.sg1000.exe contrib_sierpinski4_10lines.bas -o example.rom
bluemsx /machine \"SEGA - SG-1000\" /rom1 example.rom
==== ANY PROBLEM? ====
If you have found a problem trying to run this example, if you think there is a bug or, more simply, you would like it to be improved, [[https://github.com/spotlessmind1975/ugbasic/issues/new?title=IMPROVE OTHER CONTRIBUTIONS SIERPINSKI CHALLENGE (final)|open an issue]] for this example on GitHub. Thank you!===== POWERED BY =====
[[:ugbasic:user:examples|{{ :ugbasic:user:logo-ugbasic.png?nolink&600 |}}]]